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Abstract

We present an end-to-end trainable image compression

framework for low bit-rate and transparent image compres-

sion. Our method is based on variational autoencoder,

which consists of a nonlinear encoder transformation, a

soft quantizer, a nonlinear decoder transformation and an

entropy estimation module. The prior probability of the

latent representations is modeled by combining a hyper-

prior autoencoder and a Pixelcnn++ based context module

and they are trained jointly with the transformation autoen-

coder with attention mechanism. In order to improve the

compression performance, a non-local convolution based

attention mechanism is designed for allocating bits adap-

tively. Finally, a novel rate allocation algorithm based on

linear optimization is used to assign the bits for each im-

age dynamically, considering the bits constraint of the chal-

lenge. Across the experimental results on validation and

test sets, the optimized framework can generate the highest

PSNR and MS-SSIM for low bit-rate compression competi-

tion, and cost the lowest bytes for transparent 40db compe-

tition.

1. Introduction

Recently, artificial neural networks (ANNs) have been

applied to solve the image compression problem and a num-

ber of works have been proposed [3, 4, 10, 11, 8, 2, 6, 7, 5].

The previous methods can be divided into two categories.

The first type of methods focus on generating superior per-

ceptual quality [8, 6]. The basic idea for those methods

is to generate high compression level without severe per-

ceptual loss by generating image components, such as tex-

tures or plain regions. The generated components do not

highly affect the the perceptual quality of the reconstructed

images. Although the reconstructed images seem to be re-

alistic, some details of the images may be modified. An-

other type of methods focus on designing end-to-end op-

timized image compression framework[11, 3, 4, 10, 7, 5].

In these approaches, the modules such as transformation,

quantization and entropy estimation are optimized jointly.

In [11], a certain proportion of binary latent representations

is selected for information compression in every iteration,

and the additional latent representations are increasingly ex-

ploited to achieve a progressive improvement in quality of

the reconstructed images iteratively. Different from [11],

current popular frameworks [3, 10, 4, 7, 5] formulate the im-

age compression problem as being how to generate discrete

latent representations with entropy as low as possible in an

unsupervised way. In summary, the intuition of those meth-

ods such as [11] focus on how to generate as high-quality re-

constructed images as possible given a fixed number of rep-

resentations. On the other hand, the second kind of meth-

ods pay attention to reducing the entropy of latent repre-

sentations. Hence rate or entropy estimation modules are

crucial in an end-to-end optimized framework. In [3, 10],

the entropy models with a fixed distribution for each rep-

resentation are studied in the proposed novel frameworks,

various entropy models such as gaussian mixture models,

piecewise linear functions are designed for rate estimation.

Their performance capabilities have been proven by com-

paring the results with those of conventional codecs such

as JPEG2000. Motivated by the characteristics of natural

images that the scales of the representations vary together

in adjacent areas, [4] introduces a hyperprior based entropy

model that estimates the scale of the gaussian distribution

for each representation. The hyperprior based framework

outperforms all previous ANN-based approaches, and ap-

proaches the most excellent traditional codec BPG. Two lat-

est methods [7, 5] have outperformed BPG on both PSNR

and MS-SSIM distortion metrics by predicting both mean

and scale with context models. In [7], the authors extend

the the works of [4] by generalizing the GSM model to a

conditional Gaussian mixture model (GMM) and a masked

convolution based context model is combined with the hy-

perprior to predict both the mean and scale of distribution.

Similar to the idea in [7], [5] exploits two types of contexts,

bit-consuming contexts and bit-free contexts, which allow

the model to estimate the distribution of each latent repre-

sentation more accurately with a more generalized form of

the approximation models.

1



The proposed image compression framework is built on

our CLIC 2018 solution[14]. Motivated by the above latest

methods, our submitted solutions highlight three principal

improvements: attention mechanism, soft quantization and

context model with Pixelcnn++. The attention mechanism

is designed to grasp information of larger scope, so as to

improve the compression performance by allocating more

bits to hard image components. The soft quantization is

used to reduce round-off loss and improve the reconstruc-

tion quality. Pixelcnn++ [9] is applied to build the context

model by capturing the long-range connections between la-

tent features. Moreover, a resource allocation algorithm is

designed to select the best compression parameter for each

image considering the 0.15 bpp and 40db PSNR(0.993 MS-

SSIM) constraints in the low bit-rate and transparent com-

pression challenges.

2. End-to-End Optimized Image Compression

2.1. Encoder and Decoder with Attention Mecha
nism

The encoder-decoder architecture is similar to our

CVPR 2018 CLIC framework [14]. An autoencoder with

unbalanced structure as shown in Figure 1 is used. The

encoder fe and decoder fd are composed of convolutions

and GDN/IGDN nonlinearities. The GDN/IGDN imple-

ment a type of local divisive normalization transformation

that has been proven to be particularly suitable for density

modeling and images compression [3, 4]. In the encoder,

a pyramidal feature fusion structure is proposed to learn

optimal, nonlinear features for each scale. The features of

intermediate layers with 1

2
, 1

4
and 1

8
of the original size are

downsampled to 1

16
via convolutions. In order to decrease

the model parameters and reduce the computational costs,

we have replaced all 5 × 5 convolutions used in [3, 4] with

3 × 3 convolutions. In order to capture the global depen-

dencies between features, the residual non-local attention

block (RNAB) [13] is integrated into the whole framework.

RNAB is constructed by stacking several residual local

and non-local attention blocks which are used to extract

features that capture the long-range dependencies between

pixels and pay more attention to the challenging parts. The

detailed architecture of RNAB is displayed in Figure 1 as

well. Then the downsampled features are concatenated, and

a RNAB and a 1 × 1 convolution are applied to generate

the encoded representation y. In decoder, convolutions,

IGDN and RNAB are combined to reconstruct the image

from quantized representation ŷ.

2.2. Soft Quantization

The round operation ŷi = round(yi) is widely used in

learning based compression framework currently [4, 5, 7].

Figure 1. Illustration of the variational autoencoder architecture

used in this paper. Convolution parameters are denoted as num-

ber of filter × kernel height × kernel width/ down or upsampling

stride, where ↓ indicates downsampling and ↑ indicates upsam-

pling. AE, AD represent arithmetic encoder and arithmetic de-

coder. RNAB stands for the residual non-local attention block.

However, the transformation from floating point numbers

to integers can decrease the reconstruction quality signifi-

cantly (at least 0.5db for PSNR and 1.5db for MS-SSIM).

The soft quantization [2, 6] is integrated into our framework

to decrease the round-off loss. Given the learnable cluster-

ing centers C = {c1, ..., cM}, the nearest neighbor assign-

ments can be used to compute the latent representation in

the forward pass:

ŷi = Q(yi) = arg minj‖yi − cj‖. (1)

However, the above equation is differentiable, it’s replaced

by the soft assignment in the backward pass to compute the

gradients:

ỹi =

M∑

j=1

exp(−σ‖yi − cj‖)
M∑
l=1

exp(−σ‖yi − cl‖)

cj . (2)

As stated in [6], the soft quantization can be implemented

in TensorFlow as

ŷi = tf.stopgradient(ŷi − ỹi) + ỹi. (3)

2.3. Rate Estimation Module

We model each latent ŷi as a Laplacian distribution with

mean and scale parameters µi, σi convolved with a unit uni-



Figure 2. Illustration of the rate estimation module which consists

of a hyperprior autoencoder, a context model and an entropy pa-

rameter sub-network.

form distribution. This ensures a good match between en-

coder and decoder distributions of both the quantized la-

tents. Following the work of [7], both the hyperprior as

well as the causal context of each latent ŷi to predict the

Laplacian parameters. As shown in Figure 2, the rate esti-

mation module is consisted of three subnetworks: a hyper-

prior network H with parameter Θh, a context model Tcm
with parameter Θcm and a entropy parameter subnetwork

Tep with parameter Θep. The predicted Laplacian parame-

ters are functions of learned parameters Θh, Θcm and Θep:

pŷ(ŷ|ẑ,Θh,Θcm,Θep) =
∏

i

(Lap(µi, σ
2

i ) ∗ U(−
1

2
,
1

2
))(ŷi),

(4)

where µi, σ = Tep(Γ,Υ;Θep) is the output of the entropy

parameter subnetwork. Γ = hd(ẑ; Θh) is the output of

hyperprior network and Υ = Tcm(ŷ<i; Θcm) is generated

by the context model.

Hyperprior Network H: As illustrated in Figure 2, the

subsampled feature y is fed into the hyperprior encoder

which summarizes the distribution of standard deviations in

z = he(y). z is then quantized ẑ = Q(z), compressed and

transmitted as side information. The decoder estimates the

parameter Γ = hd(ẑ) and Γ is taken as the input of entropy

parameter subnetwork Tep. As to the distribution of ẑ, we

model it as a non-parametric and fully factorized density

model because there doesn’t exist prior knowledge for ẑ, ,

similar to the strategy used in [4]:

pẑ|ψ(ẑ|ψ) =
∏

i

(Pzi|ψi
(ψi) ∗ µ(−

1

2
,
1

2
))(ẑi), (5)

where the vector ψi represents the parameters of each uni-

variate distribution Pzi|ψi
.

Context Model:As to the Tcm, the Pixelcnn++ [9] is

used to generate the context features Υ in our implementa-

tion. Different from the masked convolution used in [5, 7],

the contexts in the proposed framework are conditioned on

the left and to the up pixels in an image. Techniques such

as downsampling and short-cut connection are used to in-

crease the receptive field. Specially, the additional gated

ResNet blocks with 1× 1 convolution are inserted between

regular convolution blocks to grow the receptive field. The

experimental results show that Pixelcnn++ can improve the

perceptual quality of generated images by encouraging the

context model to capture long range dependencies.

Entropy Parameter sub-network Tep: Then the outputs

Γ and Υ are concatenated and fed into Tep. The final layer

of Tep must have exactly twice as many channels as the bot-

tleneck, so as to predict two values: the mean and scale of a

Laplacian distribution for each latent. (Please refer to Fig-

ure 2 for the details of Tep)

Finally, the compression rates are composed of two part:

rateRy of compressed representation ŷ and rateRz of com-

pressed side information ẑ. These rates are defined as fol-

lows:

Ry =
∑

i

−log2(pŷ(ŷ|ẑ,Θh,Θcm,Θep)),

Rz =
∑

i

−log2(pẑi|ψ(ẑ|ψ))
(6)

2.4. Optimized Rate Control

Rate-Distortion optimization is a common strategy in al-

gorithms such as HEVC and JPEG2000. Considering the

bits constraint, a rate control optimization problem is de-

fined to allocate the bits more effectively for each image:

minj∈M

N∑

i=1

Dj(xi, x̂i) st.
∑

i

Rij < Rmax, (7)

where D represents the distortion between original image

xi and the reconstructed image x̂i. M is the vector set

which contains all possible quality configurations for the

set of images. N is the image number. Dj and Rj are the

distortions and rates under configuration j. The best quality

configuration is selected for each image via optimizing Eq

(7) in our implementation. The rate control problem is

optimized using dynamic programming algorithm.

3. Experimental Results

For training, 5000 high-quality images licensed under

creative commons were downloaded from flickr.com and

selected from CLIC 2019 challenge training set. These im-

ages were downsampled to 2000×2000 pixels and saved as

lossless PNGs to avoid compression artifacts. From these



Table 1. Evaluation results on CLIC 2019 validation and test datasets.
Methods PSNR MS-SSIM bytes bpp Decoding Time

TucodecSSIM 29.840 0.9760 4692810 0.14906 23953868

Validation TucodecPSNR 32.520 0.9640 4722141 0.14999 15255275

TucodecPSNR40dB 40.000 0.9930 27216543 0.86450 24013782

TucodecSSIM 28.605 0.9739 15748980 0.15000 74252895

Test TucodecPSNR 31.217 0.9575 15748347 0.14999 46174994

TucodecPSNR40dB 40.000 0.9931 105429323 1.00415 75283641

downloaded images, we extracted two million patches with

size 256 × 256 to train the network. Our team have sub-

mitted three solutions: TucodecPSNR, TucodecSSIM and

TucodecPSNR40db. The results for the validation and test

sets are reported in Table 1. The cluster number is set as

200 in the soft-quantization. We use two kinds of distortion

measures in our solutions: mean square error and percep-

tional loss to train the autoencoder

L = λD +Ry +Rz, (8)

In TucodecSSIM which focuses on perception quality,

the loss D = 0.2 × ||x− x̂||
2

2
+ 0.8 × (1 − Lmsssim)

is defined for the perceptional loss where Lmsssim is as

defined in [12]. Then the perceptional loss is combined

with the same GAN setup defined in [8] for network

optimization. Then five models with λ=0.2/0.3/0.4/0.5/0.6

are trained for rate control. Once the resource allocation

is done, MS-SSIM of 0.976 and 0.974 can be achieved for

validation and test sets respectively under the constraint

of less than 0.15 bpp. In TucodecPSNR40db, the MSE

loss D = ||x− x̂||
2

2
is used for parameters learning and

five models with λ=4096/4800/5500/6500/8000 are trained

for rate control. Finally, the compressed files with bpp

0.864 and 1.00 are generated for validation and test sets

given the at least 40 dB (aggregated) PSNR and at least

0.993 (aggregated) MS-SSIM constraints. TucodecPSNR

is built on our modified version of H266 [1], the results

for multiple QPs are generated for rate control. Further-

more, a post-processing module similar to the one used

in [14] is designed to remove the compression artifacts

and PSNR with 32.52 and 31.22 are obtained with 0.15 bpp.

4. Conclusion

In this paper, a novel deep learning based image com-

pression framework with attention mechanism is designed

for CLIC 2019 challenge. In the autoencoder part, an

attention mechanism based on non-local convolution is in-

tegrated into the encoder-decoder procedure to capture the

global connections between features in different channels

and spatial locations. The experiments show that the atten-

tion mechanism can improve the compression performance

by allocating more bits to important area in an unsupervised

way. Moreover, our experiments have demonstrated that the

soft quantization strategy can improve the reconstruction

quality by decreasing the round-off loss, together with the

Pixelcnn++ based contexts and hyperpriors. As shown

in the results of the challenges on the validation set , our

approaches TucodecPSNR and TucodecSSIM rank the

1st place in Low-rate compression for best PSNR and

best MS-SSIM. The submitted method TucodecPSNR40db

generate the lowest total bitrate in Transparent compression.
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